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Abstract

Behaviour of robots within a human-populated space can be disruptive, as robot motion
does not necessarily conform to social norms. Typical movement models are oblivious to social
expectations, and so easily violate personal space and other social rules, magnifying the unnatu-
ral behaviour of robot agents and causing discomfort to human occupants. This paper presents
a navigation algorithm that incorporates human proxemics into a modified Rapidly-exploring
Random Tree (RRT) algorithm. Our Socially-Realistic RRT algorithm (SRRRT) includes both
a cost function based on a realistic model of human interaction distances, as well as a human
motion model in order to produce movement patterns that better integrate with human so-
cial behaviour. We experiment with our algorithm in simulation, comparing it with both a
naive RRT and an A* implementation in both static and dynamic movement contexts. SRRRT
demonstrates quantifiably better paths in terms of social cost, while maintaining a simple and
easily extensible implementation design. Inclusion of such a design in robot motion enables more
socially transparent behaviour, improving the ability of humans and robots in real or virtual
contexts to coexist.

1 Introduction

In the future, humans and robots will share the same personal space as they complete co-operative
tasks. Therefore, it is beneficial to consider and model any psychological reactions that may occur
in this space. Humans have instinctive and cultural rules that define how they experience and
interact with the spaces around them, coined by Edward T. Hall as proxemics. For example,
proxemic rules define socially acceptable distances and angles for participants in a conversation. If
these constraints are violated, humans may feel uncomfortable. The motions and actions of robots
must take these rules into account in order to work and collaborate with humans in harmony.

One area of developing interest is the use of socially aware navigation algorithms. These algorithms
attempt to take proxemic rules into account when robots are navigating in the same environment
as humans. The goal is to avoid or minimize the robot’s intrusion into the personal space of
humans. A major influence on these algorithms are techniques in collision avoidance, which tend
to create a circular personal space to be avoided. Another main area of work has focused on robots
approaching humans at a socially acceptable angle and distance to provide information or simulate
conversation.

This paper presents an algorithm to combine the above two ideas to create an algorithm that can
create a path that avoids the personal space of others while still appearing to be natural and human-
like. This approach would aim to minimize the disruption caused by robots working beside humans
by replicating social rules. Differing from past work, we aim for path-planning that is relatively
socially invisible, or at least socially non-disruptive. The goal of our work is to produce a path that
a human would consider respectful of personal space and similar to normal social navigation that
humans accomplish everyday.

We have taken the Randomly-exploring Rapid Tree (RRT) algorithm from the robotics literature
and modified it to be socially realistic. This was achieved by incorporating insights from the
proxemics literature. We call this the Socially-Realistic Rapidly-exploring Random Tree algorithm
(SRRRT ), and apply it to virtual character navigation on a 2D plane. The SRRRT algorithm has
been extended to have a cost function based on a model of personal space around simulation agents.
This cost function can be visualized as a circular shape around an agent, with a fan shape outwards
in the direction the agent is facing. This cost function allows the SRRRT algorithm to evaluate
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different paths around the space and avoid regions where proxemic rules make it costly to navigate.
The modifications to the RRT algorithm are fairly simple, but offer large advantages in terms of
social realism. It is our hope that this algorithm could therefore be implemented in real-world trials
relatively quickly, as well as be supported by the large volume of RRT work already done.

We further improve the path found by the SRRRT to be more socially realistic by adding a human
movement model based on human movement literature. This model incorporates an angle constraint
on the nodes comprising the navigation path found by the algorithm. We argue that the smoother
path created, with smoothness defined by the angle between nodes in the path, is more natural and
human-like than those paths produced by A*, another path-planning algorithm.

Applications of this algorithm would be in any environment with a human or human avatar where
a robot or simulated agent wishes to navigate through the space in a socially realistic manner.
Specific scenarios may include co-operative office work, sharing a subway car, or as navigating
background characters in a video game around the player.

Specific contributions of this work include:

• Our SRRRT algorithm is a novel path-planning algorithm which takes the personal space
of human beings into account, while planning smooth paths based on a human movement
model.

• In order to evaluate our system we define a social cost metric derived from the literature of
proxemics and integrate it into two popular path-planning algorithms.

• Based on our model we gather simulation data evaluating and comparing SRRRT and A*
with path smoothing and social cost metrics. A short discussion of these results offers insights
into further algorithmic improvements.

The next section of this paper provides related work. Section 3 describes the algorithms and models
created. Section 4 describes the simulator as well as a discussion of the collected data. We conclude
with Section 5.

2 Related Work

2.1 Human Movement and Interaction

Perhaps the most well known feature of human interaction relevant to navigation concerns is the
extent and nature of personal space. Human interaction space has significant complexity, with
important social implications. Hall, for instance, divides human interaction distance into various
zones of familiarity along with the acceptable and unacceptable actions that may occur therein [5].
For example, the intimate zone may only be entered by partners, and may only allow gestures like
soft touching. Strangers entering this zone would make the person very uncomfortable. Another
useful observation by Hall is that these distances change drastically by cultures. The numbers he
offers are valid for North America, but may not be so for Japan or the Middle East.

Human beings, like robots, also have physical constraints on the paths they take through a space.
This suggest that a navigation algorithm may also take properties of human movement into ac-
count in order to be socially realistic. In particular, human movement has a necessary inertia
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component which produces curved paths when plotted [2]. This is sharply in contrast to the A*
path-planning algorithm commonly employed in simulation, which tends to produce piecewise linear
paths. Smoothing reduces such artifacts, but this result with others seems to suggest that human
motion would be best represented as non-holonomic, with the motion depending on the orientation
of the trunk of the individual [1].

2.2 Human-Robot Proxemics

There is a growing body of literature on interactions between humans and robots that use increas-
ingly realistic approximations of human behaviour. A framework has been proposed by Lam et al.
that defines rules and fields to help humans and robots co-exist in a space [8]. The six rules define
the relationship of robots to other robots and to humans, such as priority levels and the rule to
leave a space when intruding. The framework was used successfully in an experiment to manage
interactions between multiple robots and humans.

2.2.1 Psychological and Emotional Factors

Human psychology and robot motion can influence how the robot’s motion is perceived by sur-
rounding humans. Saerbeck and Bartneck elicited emotional states that humans placed on robots
due to the robot’s motion [15]. Strong factors to influence the perceived emotion was acceleration
of the robot and the curvature of their path. Robots have also been used to interact with children
with autism spectrum disorder in a socially assistive manner [4]. These robots provided motion
and aural cues to the children to imitate human emotional states, which the children responded to
by interacting or disengaging with the robot. The size and shape of the robot may also be a factor
in how humans interact with the robot. In a study by van Oosterhout and Visser, a smaller robot
received more interaction by younger participants, while adults tended to prefer the larger robot
[20].

The physical distance that humans are comfortable with robots is also crucially important for
study and modelling. When asked to approach or be approached by a robot in trials, the human’s
personality and familiarity with robots modified the distance they stood at [19]. For example,
participants who were rated ’proactive’ by Walters et al. tended to leave a larger distance between
themselves and the robot [21]. It should also be noted that parcipiants tended to leave the same
amount as Hall predicted for human-human interaction, although some participants moved closer
to the robot then expected. This may signal that the participant did not feel that the robot was a
social equal to be offered the same personal space.

2.2.2 Approaching Humans

In an effort to make robots more useful as information guides or assistants, effort has been made
to identify and approach persons receptive to a robot’s assistance [16]. This work also includes
a model that determines proper placement of an informational robot within a group [22], robot
manipulation of conversational formations to steer group movement [7], and how to use human
pose estimation to identify the correct placement of the robot for interaction [18]. The angle of
approach has also been reported to be important to the comfort of humans, as well as the criterion
that the robot should be visible to the human as much as possible [3]. The use of face detection
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and tracking as well as verbal questioning for willingness to interact can also help robots co-operate
to perform tasks with a human [17].

Rios-Martinez et al. have created a simulated robot which uses a Risk-RRT algorithm to navigate
around virtual agents having a conversation [14]. This robot is also able to recognize formations in
a conversation between simulated agents and approach the group in a natural way. Our approach
shares ideas with this work, but adds the concept of a human movement model to the RRT algorithm
in order to find a smooth path. A Dynamic Window Approach has also been used in order to
plan and approach a human without pre-planning [6]. This approach uses a continuous model
to navigate the robot into a trajectory that approaches humans slightly from the side to avoid
threatening behaviour.

2.2.3 Passing and Pathing

When a robot and a human are heading towards each other, safety and comfort considerations
dictate that the human be given ample space [23]. Experimental feedback can also offer rules for
preferred speeds and at what distance the robot should begin to move to the side [11].

Psychological and geometrical proxemic rules can produce emergent behaviour, as found during an
evacuation scenario in a conference hall [13]. An approximation of personal space is considered
in a local potential field model in order for agents to physically push away agents in their path,
potentially leading to agents falling down and becoming obstacles. This use of proxemic rules
only considers an agent’s personal space to extend the agent’s physical space and not as a region
to be avoided as in our work. It is interesting to note that in stressful situations, human beings
may disregard proxemic rules out of concern for their own safety, possibly endangering robots that
cannot react to the changing situation. Future work in our model will focus on how situational or
individual changes in human perceptions of personal space affect appropriate path-planning.

An iterative approach to path around humans and reach the destination has been implemented by
Pandey and Alami [12]. This work uses proxemic rules and task specific rules in order to produce a
smooth path through a space while performing tasks such as guiding a human follower. Our work
builds on this by providing an explicit social cost function in order to measure the cost of a path.
A movement model for the agent is also integrated into the SRRRT to produce a socially realistic
path.

2.3 Queueing

An interesting application of social properties in robot movement was demonstrated by Nakauchi
and Simmons. In their work a robot has been developed that uses the concepts of personal space
and queueing to wait in line to buy coffee [10]. Their design uses experimental data in order to
construct an average personal space area shape for people waiting in line. The robot is then able
to manoeuvre itself to the end of the line and queue naturally until reaching the coffee vendor.

3 Algorithms and Models Used

When deciding which algorithms to modify to explore navigating around personal space, we chose
algorithms already known to the simulation and robotics community. This was done to build upon
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Classification Radius Activities

Intimate 0.45m Embracing, touching or whis-
pering

Personal 1.2m Interactions between family
members or close friends

Social 3.6m Interactions with acquaintances

Public 7.6m Public speaking

Table 1: Hall’s classification of distances

Figure 1: The personal space model around an agent

the large body of literature available, as well to encourage existing systems to implement benefits
found here and in future work. As the RRT and A* algorithms are widely known by the robotics
community, we assume the reader is familiar with them for the sake of brevity.

3.1 Proxemic Values

To create our model of personal space, we relied on the well-known proxemic values found in Hall’s
work [5]. His work defined four separate distance classification in which various actions are socially
acceptable. These are briefly summarized in Table 1. For example, any interaction between persons
with less than 1.2m of space between them but more than 0.45m would be classified as occurring
in ’personal space’. It should be noted that these are imprecise measurements, and are based upon
Hall’s own culture of North America. Hall warns that various cultures may have a different set of
limits or activities than seen here.

3.1.1 Social Cost Algorithm

The proxemic distances above are used to create a social cost region around an agent. Figure 1
shows the three regions of the model: the inner circle, the outer circle, and the fan shape. The
boundaries of the circle are defined by the values above. The intimate distance is used for the inner
circle, and the personal distance for the outer circle. The social distance defines the outer boundary
of the fan shape, which has an arc of 60 degrees.

The cost algorithm works by evaluating a point p in space against all agents A in the space. For
each agent a ∈ A where a is not the navigating agent, d is set to the distance that p lies away
from a. p is then classified according to Hall’s rules based on the value of d. For example, p will
be classified as being within the intimate distance if d < distintim, where distintim = 0.5m in our
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paper.

Based on these classifications, the distance and angle from a is used to sum the cost. For instance,
if p is within the intimate distance, the social cost of p is calculated by multiplying a constant
kintim by dintim/d. In our experiments, kintim was set to 500 based upon experimental results.
Future work should be undertaken to assign units and real-world values to these constants. If
dintim < d < dpersonal, the cost is kpersonal ∗ dpersonal/d plus an extra costfan if p is within the fan
area as defined above. This ensures that the area directly in front of the agent is penalized higher
than the areas to the back and side. The last case is where dpersonal < d < dsocial, in which case
the social cost is costfan.

Note that the social cost metric used below in our experiments is the social cost evaluated for each
frame of the simulation, with p as the navigating agent’s position.

3.2 A* Extension

The SRRRT algorithm is the focus of our paper. However, A* is a widely used path-planning
algorithm in the field of robotic path-finding and is therefore useful to examine for comparison.
Benefits of A* include the use of a heuristic function, which attempts to estimate how much farther
the goal is from a particular node. In some cases, this heuristic can decrease the time taken to
find a path dramatically. Here we present modifications to A* to accomplish similar goals to the
SRRRT algorithm.

As A* is a well-known algorithm, we will not present the basic operation. However there are two
points of interest that have been modified in this paper. The first is to change the known cost for
each A* node to include the social cost for each node as well as the distance travelled from the
root node. The social cost is described as above, with the position of the node as p. This allows
the algorithm to avoid routes that pass through a region with high social cost.

The A* algorithm was also modified to instantly re-path if the navigating agent was experiencing
a high social cost at any moment. This increased the sensitivity of the navigating character to
moving agents and outdated information. Instead of continuing to move into another’s personal
space, a new path to the goal was computed that would, with high likelihood, avoid the agent
intruded upon. However, the threshold for recalculation was arbitrarily set. In future work, an
improved approach would be to dynamically set this threshold based on the expected social cost of
the surrounding environment. An example of this may be a subway environment or other highly
congested context, where some social cost is to be expected no matter the position due to such
close proximity to other persons.

3.3 Socially Realistic Rapidly-exploring Trees

Rapidly-exploring Random Trees offer the algorithmic base for the Socially-Realistic RRT described
in this paper. The RRT algorithm is a probabilistic roadmap creator that starts from a root node
and iteratively picks target nodes to extend the tree towards. These target nodes are either random
points in the space or the goal if there is one. As a full discussion of RRTs are beyond the scope of
this paper, we point to the comprehensive guide provided by Lavalle and Kuffner for further details
[9].

We have modified two functions of the RRT algorithm to create the SRRRT algorithm. These are
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the functions to choose the next node to expand the tree from, and the function that performs the
expansion of the tree.

3.3.1 Choosing Node to Expand

In the RRT algorithm, typically the closest node to the target node is chosen to expand the tree
from. Therefore, a distance heuristic is applied to all nodes in the tree, and the one with the lowest
cost is selected. We propose that this heuristic be changed in order to also consider the social cost
of the node. Equation 1 shows the proposed heuristic. The heuristic h(n) is comprised of two parts:
the Euclidean distance d to the target node and a cost term. This cost term is comprised of the
social cost of the node’s position, added to the cost of the node’s parent. The parent’s cost pcost is
added to discourage paths that lead through socially costly areas. Finally, this sum is multiplied
by some value c. This weight determines whether the distance term dominates or the social cost
term. Our trials found that a reasonable value for c was 2 based upon observation of tree branching
and personal space avoidance. Future experiments will determine appropriate metrics to evaluate
the effect of c.

h(n) = d+ c ∗ (socialCost(n) + pcost) (1)

3.3.2 Extending Towards Target Node

At the extension stage, the algorithm has picked a target node t and the node from which to extend
the tree e. Typically, the RRT algorithm creates a new node on the line from e to t, depending
on the movement model implemented. It is also desirable to check for obstacles that prevent the
creation of the new node at this stage. In our work, the SRRRT algorithm checks for obstacles as
well as selects the best position for the new node based on the social cost.

In our algorithm, the first step is to determine the vector from e to t. Then, this vector is slightly
rotated in order to sample potential new node positions, which lie a fixed distance along the vector.
These node positions are evaluated according to three criteria. First, these nodes may not lie
within an obstacle, Secondly, they must be within the acceptable turning angle as defined by the
movement model defined in our algorithm. Finally, the social cost for each node position is found.

Figure 2: Movement model constraint

The second criteria is demonstrated in Figure 2. The node in the middle of the figure is e, while
the node to the left is e’s parent node. From these two nodes another vector can be determined.
Our movement model only permits a new node to be created within a certain angle of this vector,
which is the solid line to the right in the figure. If a potential node does not lie within this arc,
it is discarded. In this way, the movement model directly controls the angle between nodes in the
path, which we argue in our results is a important criteria for natural paths.
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The third criteria is social cost, which can be easily calculated for each potential new node. At the
end of the sampling process, the node with the lowest social cost is selected, and added to the tree.

3.3.3 Human Movement Model

It is our contention that a human-like movement model is critical for socially realistic navigation.
Our movement model will produce paths that are smooth and natural, giving robots or simulated
agents socially realistic navigation. A strong advantage to RRTs is that a movement model can
easily be implemented in the above extension step by simply enforcing the constraints illustrated in
Figure 2. As a result, paths produced using this movement model have much smoother turns. An
example is shown in Figure 3a based on θ = 30◦, which can be compared to the original RRT path
shown in Figure 3b. The 30◦ criteria was made experimentally to produce smooth paths without
overly restricting the navigation tree created. It is our hope that further study of the human motion
literature will inform our movement model, and lead to increasingly realistic motion.

(a) RRT path with movement model (b) RRT path with no movement model

4 Simulator and Results

The experiments performed were designed to simulate dynamic social situations in a crowded space,
with zero, one, or many ’obstacle agents’ who may be motionless or moving. For simplicity, these
agents move by picking a random destination, rotating to face it, and then move along a straight
line to their target. These obstacle agents provide the context with which to test the algorithms
under various conditions. It was decided to use the experiment parameter of zero obstacle agents
to provide a useful data baseline for error detection. Experiments of one agent were designed to
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capture the behaviour where the navigating algorithm faces a minimum of personal space, while
experiments with five agents in the space are to provide an dense, cramped environment to navigate
through. Future experiments could use data from human studies to determine realistic densities
for scenarios such as a public square, metro car, or mall.

The experiments consisted of two parts. First, the A* algorithm was tested for all combinations
of number of agents (0, 1, 5), agent movement (static, dynamic), and the A* heuristic (distance to
target, distance to target squared). For the second experiment, the SRRRT algorithm was tested
on the same combinations of number of agents and agent movement, but with the addition of the
human movement model (used, not used). These combinations ensure that the performance of
these algorithms is captured over a wide range of parameters. Each particular trial was repeated
10 times with a different random seed, and the results were averaged together. These experiments
were carried out in a Java real-time simulation environment on a Intel Core i7-3820 CPU computer
with 16 GB of RAM under Ubuntu 12.04.

The algorithms were tested in an environment consisting of a room with two main entrances and
two exits, as seen in Figure 3. The navigating agent begun the experiment on one side of the room,
and their goal was to manoeuvre to the square on the other side while avoiding the obstacle agents
inside. This space was quite advantageous in testing the algorithm’s ability to navigate around a
constrained environment with dense, overlapping personal spaces. The algorithm could choose to
enter through one of the entrances in order to intelligently minimize the social cost of the path.
Our future work intends to remake this space into a subway car in order to study social dynamics
under extremely crowded and stressful social situations.

The simulator created provides a real-time, efficient framework in order to visualize, measure,
and compare socially realistic navigation algorithms. Along with standard timing and logging
capabilities, this simulator offers a unique social cost visualization as shown in Figure 3. The upper
agent is about to begin navigating through the room, which contains a stationary agent facing
left. The personal space for the stationary agent is shown clearly as a fan shape connected with
a circle, and the visualization is produced with the social cost algorithm defined above. Even as
multiple agents move throughout the space, the social cost visualization offers an indication of
socially expensive regions in real-time.

Figure 3: Room layout with entrances/exits
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Algorithm Max Angle Avg. Angle Num. of Sharp Angles

RRT With Movement Model 74.83 16.02 1.02

RRT Without Movement Model 93.89 26.90 27.10

A* 51.75 7.62 23.21

Table 2: Smoothness metric results

Mobility of Obstacle Agents Num. of Agents Social Cost

SRRRT

Mobile
5 132.51
1 32.41

Immobile
5 4.00
1 0.0

A*

Mobile
5 2194.8
1 207.70

Immobile
5 0.0
1 0.0

Table 3: Social cost by obstacle agent parameters

4.1 Smoothness Metrics

Table 2 shows various angle measurements taken on paths found by the navigating algorithms.
To obtain these measurements, we examined each set of three neighbouring nodes along the path.
Given these three nodes it is then trivial to find the angle at which the path is bending. We report
the maximum angle found at any node in the path, the average angle for all nodes in the path, as
well as the number of ’sharp angles’. These sharp angles are the number of angles found in the path
that exceed the angle criteria set out in our human movement model. We argue that these three
metrics define the smoothness of the path. It is apparent that when the SRRRT algorithm is used
with the human movement model, the largest angle, average angle, and number of sharp angles
decreases compared with the normal RRT algorithm. We submit that this result is desirable as a
smooth path is human-like and more socially realistic than a sharply-turning path. Future work
will further expand upon this movement model, as well as validate the data against the human
movement literature.

It is also informative to compare these results to those obtained with the A* algorithm. While the
A* path tended to have a smaller max angle and smaller average angle, the number of sharp angles
was much larger than for the SRRRT algorithm. One likely reason for these results is that the A*
algorithm tends to favour straight line paths with sharp corners, as in Figure 4.

4.2 Social Cost

Table 3 shows the results obtained from grouping the experiments based on the number and mobility
of the obstacle agents within simulation space. The social cost metric defined above gives insight
into the navigating algorithms. One expected observation is that a higher number of agents, with
more mobility, causes more social cost.
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However, an interesting result is the difference between the data for the A* and SRRRT algorithms.
With five moving agents, the average social cost for a agent navigating using RRT was 132.51.
Navigating around one moving agent produces about five times less social cost, as to be expected.
On the other hand, it is curious how the SRRRT algorithm did experience some social cost while
navigating around five immobile agents. Further work is needed to identify the cause of this. For
one immobile agent, or for the trivial case where no obstacle agent was present, the social cost was
zero.

Examining the social cost for the A* algorithm leads to a very surprising result. While the immo-
bile agents produced no social cost in the navigating agent at all, the mobile agents produced a
much larger amount. For example, an agent using A* to navigate around one mobile agent would
experience around 1.5 times the social cost of if it had used the SRRRT algorithm to path around
five mobile agents. The social cost difference between one mobile agent and five mobile agents
for the two algorithms is also very interesting. While the SRRRT algorithm experiences around
five times more social cost for five times the agents, the A* algorithm experiences over ten times
the social cost as for one agent. As a direct comparison, the A* social cost is over 16 times the
equivalent SRRRT cost for five mobile agents.

These results could arise from how the A* algorithm tends to produce paths that closely hug the
personal space of other agents, as in Figure 4. Any movement by the obstacle agents may lead to a
rapid increase in social cost as the navigating agent finds itself intruding upon personal space. We
suggest that naive A* is not applicable to navigate around personal space. SRRRT incurs a much
smaller social cost when used to path through a dense social environment, and should therefore be
chosen in these situations.

Figure 4: A* algorithm producing straight line paths

5 Conclusions and Future Work

Socially realistic models for robot navigation are a useful and interesting direction for better and
more natural integration of robot movements in human society. In this paper, we have presented
the Socially-Realistic Rapidly-exploring Random Tree algorithm to navigate through an environ-
ment while maintaining social realism. We have incorporated rules and models from the proxemic
literature in order to evaluate social cost in a space, as well as created a human movement model to
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produce smooth paths. These incorporations are both straightforward and lead to clearly improved
behaviour, as seen in the comparison of the SRRRT algorithm to an implementation of A*.

There are a number of directions for future work in our approach. A more detailed model of
human social behaviour would allow for even better integration, and we are currently working on
algorithm variations that will better accommodate heterogeneous social groupings (mixtures of
intimate groups and strangers), the potential for eye-contact, the emotional states of individuals,
cultural differences, and other social factors. Including actual, observed behaviours, such as partly
addressed in [10], would enable our design to adapt to current and changing circumstances; the
impact of highly congested contexts, for instance, would be particularly interesting, as they involve
substantial changes in human behaviours. A current, direct application of our work is in the context
of video games where computer controlled non-player avatars share many of the same navigation
concerns as robots. To ensure the player’s continued sense of immersion, it is critical that they are
not disrupted by the socially awkward behaviour of virtual agents.
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